

Workshop on Closed Loop Boreholes 7-8. sept. 2011

www.GeoEnergi.org

GEU

Why modelling?

- Evaluate the potential for vertical GHE in Denmark by extrapolating knowledge from existing plants
- Evaluate effects from GHE installation on the ambient groundwater system

GEUS

Dynamic system

www.GeoEnergi.org

Varying hydrogeological settings

Cross section profile of the subsoil layers from SW to NE

• Varying thermal properties

GEUS

Varying groundwater flow velocities

GEUS

Seasonal and short terms variation in heat/cooling demand

Expected workshop output

- Input to modelling strategy
 - What to consider:

GEU

- Varying (hydro-)geology, i.e. varying thermal properties and flow velocities
- Near/far field heat transport
- Short term transport or local equilibrium
- Coupling between GHE and surface installation to account for varying demand for heating/cooling

Expected workshop output

- Pros and cons of different software systems
 - Simulation of relevant processes
 - Simulation at different scales
 - Near and far field heat transport
 - Coupling of underground heat transport and surface installations
 - Ease of use
- Expected software system:
 - Feflow

G F U

– Coupling to Trnsys?

www.GeoEnergi.org

Expected workshop output

• Output from modelling

GEUS

- Tabularised/type curves based on sensitivity study
- Recommendations of software/tools